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SUNION solves the combined problem of ion expansion and of resonance absorption of p- 
polarized electromagnetic radiation. Well-posed initial and boundary conditions are derived 
within the ponderomotive approximation. Efficiency and accuracy of the code are checked by 
reproducing known results found in literature for various simplifications. A new type of 
numerical instability is exposed within the Lagrangian description of the expanding ions, 
pointing out a fundamental difliculty in treating plasma expansion into a vacuum. It originates 
from charge separation and is correlated with a singular behavior of the plasma flow. The 
solution method is considerably simplified by taking into account the first time-derivative in 
the complex second-order Schrodinger-type wave equation, and, by solving the latter by a 
Crank-Nicholson scheme, without reference to shooting methods. The absorption coefficient 
reaching values up to 60 per cent is found to be rather insensitive to the global density 
structure, and reflects more or less the local scale length at the critical density. Profile 
steepening caused by radiation pressure is accomplished within the first twenty ion plasma 
periods. 

I. INTRODUCTION 

To estimate the feasibility of laser fusion, a detailed physical and mathematical 
description of laser-target interaction is required. Of current interest in this context 
are the absorption processes and the behavior of the plasma flow under the influence 
of an incident electromagnetic wave. From numerical and analytical investigations 
(Max [ 11) it is well known that the efficiency of the different absorption processes, 
such as the inverse bremsstrahlung, the resonance absorption, or the absorption due 
to ion acoustic turbulence strongly depends on the scale length of the electron density 
profile in the critical density region where the laser frequency equals the electron 
plasma frequency. On the other hand, the pressure exerted by the radiation field 
affects the density profile to a considerable extent, especially when the light wave is 
obliquely incident. Experimental studies (Attwood et al. [2], Raven and Willi [3 ]) 
indicate that the resonance absorption is the dominant absorption mechanism in cases 
where profile steepening takes place. Consequently, it is indispensable, to treat the 
rather complex interaction of the incident laser light and the expanding plasma as 
accurately as possible. 
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Analytically, only limited information is available due to simplifications which 
necessarily have to be made. For example, the calculations of [4-61 disregarded the 
time dependence of the plasma flow and treated the wave-plasma interaction only 
locally by neglecting global boundary conditions and self-consistency. For that 
reason, various numerical codes have been developed in the last decade to get more 
realistic answers. 

Using a particle simulation code, Forslund et al. [7] studied the time history of the 
laser-plasma interaction self-consistently to obtain the absorption coefficient, the 
density and velocity profile, and the ambipolar electrostatic field. For the case of 
perpendicular incidence Andrejev and Sauer [B] calculated the lapse of time of the 
reflection coefftcient for a finite plasma layer. The fluid equations for the space-time 
dependence of the plasma density and velocity were solved numerically by the 
explicit Lax-scheme. In spherical geometry Virmont et al. ]9] studied density profile 
modifications caused by a wave, normally incident, using a Lagrangian mesh for the 
fluid equations; the explicit time dependence of the wave was not taken into account 
as well as absorption. Willi et al. [lo] compared the results of a one-dimensional 
Lagrange-code (MEDUSA-code [ 111) with corresponding experiments carried out by 
Raven and Willi [3]. The numerical calculations confirmed the strong profile 
steepening and the formation of an overdense bump found in interferometric and 
holographic measurements. Different from the steady-state fluid model of Max and 
McKee [5], this bump appears at a time where the flow velocity into the critical 
region is still subsonic. Such a behavior indicates the important role of the time 
dependence in the fluid equations. 

In most of the existing numerical codes dealing with laser-target interaction, great 
efforts have been made to improve the description of the particle dynamics on both 
hydrodynamic and kinetic basis, but most of them suffer, to the best of our 
knowledge, mainly from three insufficiencies: 

(i) The combined initial- and boundary-value problem of the wave equation 
and the plasma flow has not been discussed carefully and solved correctly. 

(ii) Poisson’s equation to treat charge separation effects usually has been 
neglected. 

(iii) The slow time-dependence in the wave equation has been omitted. 

An exception is the paper of Forslund et al. [ 7] which takes into account Poisson’s 
equation and the slow time-dependence in the wave equation. However, a careful 
discussion of the numerical methods, approximations, and boundary conditions is 
missing in that paper giving indications only of what general methods were used. 

In the present paper our attention is directed to a detailed study of the time- 
dependent wave equation and Poisson’s equation. For that reason, we restrict 
ourselves to a rather simple hydrodynamic model for the expanding plasma which 
already shows surprising and not yet understood results. It is important for 
elucidating and comprehending the physics introduced by the radiation field to keep 
the number of additional physical or numerical effects as low as possible. An 
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improvement of this part can, however, easily be made, and is planned for the near 
future. 

In the next section we explain the basic equations of the problem in more detail. In 
Section III we describe the numerical method and bestow great care upon the initial 
and boundary conditions. In addition, we present a new stability analysis for the 
hydrodynamic equations and Poisson’s equation in the radiation-free case. Section IV 
shows the numerical results for three different examples: 

(a) Plasma expansion without radiation field. 

(b) Resonance absorption in the steady state and comparison with previous 
calculations. 

(c) Resonance absorption and profile modifications in an expanding plasma. 

A summary in Section V concludes the paper. 

II. BASIC EQUATIONS 

The mathematical formulation of our model for laser-plasma interaction consists 
of four coupled partial differential equations, 

-2iK,a a$ + (1 - 3p2) V(V . E) - V’E -K&(x, t)E = 0, (1) 

a:# = exp($ - w) - n, I#/- IE12, (2) 

a,n + a, (ml) = 0, (3) 

a,u + u a,v = -a,$, (4) 

with K, = k,A,, k, = w/c, a = c,~/c, fi = vthe/c, V = (a,, -iK, sin 8,, O), and 

&“(X, t) = 1 - w;ek t) 
co2 . 

Equations (l)-(4) are normalized to characteristic quantities of the physical 
problem shown in Table I; the remaining quantities are explained here. 

Equation (1) is a time-dependent two-component Schrodinger equation describing 
the temporal and spatial evolution of the radiation field in an inhomogeneous plasma 
which is represented by the cold plasma dielectric function cO(x, t). The fast time- 
dependence given by exp(--iwt) is already factored out, so that the evolution takes 
place on a longer time scale; w = (47cn,e2/m,)“2 denotes the frequency of the light 
wave obliquely incident from the right; it equals the plasma frequency at the critical 
density n, ; m, and e are the electron’s mass and charge, respectively. The wave, 
having an angle of incidence 8, and a vacuum wave number k,, is assumed polarized 
in the plane of incidence, the x-y plane (p-polarization). Since the density gradient of 
the expanding plasma has only an x component, we assume the y dependence of the 
field to be periodic in y and of the form exp(--ik,,y). This assumption defines the 
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Nabla operator in Eq. (1). The parameters a and /I denote the ion sound velocity, 
c, = (k, Te/rni)l’2, and the electron thermal velocity, uthe = (k, T,/m,)“*, normalized 
to c which is the speed of light; r, and m, are the electron temperature and the ion 
mass, respectively; k, is the Boltzmann constant. The inclusion of the term propor- 
tional to p’ in Eq. (1) yields the thermal correction to sO and is responsible for the 
mode conversion of the incoming electromagnetic radiation into an electrostatic mode 
which takes place near the critical layer (Piliya [ 121). Through the electron plasma 
frequency Ope(x, t) = (4rrn,(x, t) e*/m,)“*, the dielectric function EJX, t) from Eq. (5) 
depends on the self-consistent electron density profile whose space-time dependence 
is given by the Boltzmann relation, n, = exp($ - w), which results from neglecting 
electron inertia. The ponderomotive potential v = /E ]* (Schmidt [ 13 ]) expresses the 
influence of the radiation pressure on the electron density structure; the electrostatic 
potential 4 represents the charge separation field and is calculated self-consistently 
from the nonlinear Poisson’s equation, Eq. (2). Equations (1) and (2) can be derived 
from the electron momentum equation and Maxwell’s equations using an appropriate 
time-scale analysis (for further information concerning Eqs. (1) and (2) see, e.g., 
Karpman and Krushkal 1141, Forslund et al. 171, Morales [ 151, and Sack [ 161). 

Finally, the hydrodynamic properties of the expanding plasma are described by the 
cold ion continuity and momentum equations, Eqs. (3) and (4) where n and u are the 
ion density and velocity, respectively. 

III. NUMERICAL METHOD 

III. 1. Wave Equation 

a. Space-Time Discretization 

In general, the procedure we follow in this section to discretize the wave equation 
is comparable to that performed by Morales [ 151 and Forslund [7]. In Morales’ 
paper, however, thermal effects proportional to p have been neglected and thus, the 
structure of the wave equation valid for an s-polarized light wave is simpler than 
ours; in Forslund’s paper the solution method seems to be similar to.ours, but neither 
the numerical scheme nor the boundary conditions have been discussed in detail. 

Writing out explicitly the Nabla operator in Eq. (1) yields two coupled partial 
differential equations for the complex x and y components of the electric field, 

-aia,E,-/I, a:Ex-~,Ex= iv a&, (6) 

-ai a,Ey-a:Ey-~EyEy= iv a,&, (7) 

where 

a := 2K,a, P, := 3P2, 

E x := Ki(eo - sin* 0,) 
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EY 
:= Ki(.zo - /3, sin* 0,), 

q := K, sin 0,( 1 - p,,). 

The numerical solution of Eqs. (6) and (7) is obtained by using the Crank- 
Nicholson difference method which is unconditionally stable (Potter [ 171, Richtmyer 
and Morton [ IS]). We proceed first to discretize the time variable t in finite 
increments At, and to time average the remaining space derivatives, 

where G := ,!?,.(x, t) and F := ,??,(x, t) represent the actual values of the electric field 
components, and G := 2.,(x, t -At), and F := @,,(x, t - At) refer to their value at the 
previous time step. 

The coupling of F and G in Eqs. (8) and (9) asks for an appropriate elimination 
procedure to derive an equation for one component alone. For convenience we 
eliminate G in Eq. (9) by means of Eq. (8). After some lengthy calculation we obtain 

y,, &: 
&x + ip 

Y’ + L (E, + ipp 
PL 

with 

p = 2a/At, 

and Y is defined by 

L.?’ = -ip(F - F> - (F + F)‘, - E,,(F + F>. (11) 

Inserting LY one immediately verifies that Eq. (10) is a differential equation of 
fourth order in space for the complex component F. Moreover, the eliminated 
component G only appears through its value of the previous time step. For the 
present value of F = E”&, t) Eq. (10) can be solved implicitly if the previous values 
of F and G, i.e., F and G, the spatial dependencies of E, and .sy, and the appropriate 
boundary conditions are known. 

The spatial discretization of Eq. (10) is realized on an interval of length 2i with 
-i < x < +L. The step size between two grid points is given by A = 2L^/J, where J is 
the number of intervals. We typically used i = 200 and J= 500. 
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Differentiation of order s is given by the following recurrence formula, 

(12) 

with the auxiliary formula, 

where the indexj refers to thejth grid point. 
The resulting difference equation yields a quintdiagonal coefficient matrix for F at 

the mesh points j = 3,..., J- 1, which is solved by the usual Gauss algorithm for 
band-structured matrices, so that only the nonzero elements have to be stored 
(Jordan-Engeln and Reutter [ 191). From the spatial discretization of Eq. (10) it 
becomes evident that the first and last two rows of this matrix, i.e., j = 1,2 andj = J, 
J + 1, respectively, have to be filled by appropriate boundary conditions which we 
discuss in Section 1II.l.b. 

After having calculated F by this method we use Eq. (8) which represents, in a 
slightly rearranged form, a tridiagonal matrix equation to determine G by the same 
algorithm mentioned above. Since Eq. (8) is a differential equation of second order, 
one has to specify two boundary conditions which are inserted in the first and last 
row of the coefficient matrix. 

b. Boundary Conditions 

The solution of the wave equation is uniquely determined by the choice of 
appropriate boundary conditions at x + f co, which. have to be adjusted to the 
physical problem in question. In the underdense region where the plasma density 
rapidly falls to zero, the electric field is a superposition of the incident and reflected 
transversal wave, and the outcoming longitudinal wave giving 

E’(x, t) = Aepik,” f AR(x, t) eikrx $ AL(x, t) eikrs, (13) 

where the subscript “u” denotes the underdense asymptotic region. A is the amplitude 
of the incoming light wave held fixed well outside the plasma. AR and AL denote the 
amplitudes of the reflected transversal wave and the outcoming longitudinal wave, 
respectively; k, and k, are the corresponding wave numbers. 

At the left boundary located deep inside the plasma, the density is assumed 
homogeneous and, consequently, there only exist evanescent solutions, so that E 
exponentially decays to zero as x + --co. Therefore, these solutions consist of the 
spatially aperiodic modes corresponding to the transversal and longitudinal 
components, and read well in the overdense region 

E’(x, t) = B(x, t) eK.’ t B’.(x, t) eKlx. (14) 

Now B and K, just as BL and K,,, are the amplitudes and damping rates of the 
aperiodic modes, respectively. 
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The unknown quantities k,, k,, lc, and K, are determined by the lowest order 
WKB-approximation inserted in the wave equations (6) and (7) to yield 

k,= K, cos 8,, k, = WV%) d EJ+L) - P, sin’ Q,, (15) 

K = K, \/sin2e,-Lm, K, = (&IV% &in2 e. - h-i), (16) 
with 

E&Q = 1, x=+i 

=l-5, x=-i. rlc 
Consistent with this lowest order WKB-approximation the time derivative of the 

field amplitudes in Eqs. (6) and (7) is negligible, and we get 

-P, f3:lTx - e,Ex = ir] d,EJ,,, (17) 

-a$!Ty - e,E,, = iv a,E,r. (18) 

In the asymptotic region where the normalized electron density (see Table I) is 
zero or unity, the spatial variation of the amplitudes A and B in Eqs. (13) and (14), 
respectively, vanishes. Inserting this solution, which is already adapted to the light 
wave-plasma interaction, in Eqs. (17) and (18), and comparing the coefftcients of the 
exponentials, we obtain the polarization conditions. The number of free parameters is 
then reduced from the original eight to four, and we can write 

R,60eikxX + ‘RLeikl ‘, (19) 

iK, 

TE, cos BOenX + I-l k 
ly TLe*,X (20) 

TABLE I 

Variable Characteristic Value 

Length 
Time 
Ion velocity 
Ion , electron 

density 
Electrostatic 

potential 
Wave amplitude 

x 
1 
u 

Debye length ,I, = (k, T,/4nn,e2)“* 
Ion plasma period w;’ = (m,/4nn,e2)‘~* 
Ion-acoustic speed c, = wp,AD = (k, T,/m,)“2 
Plasma density in the unperturbed 

region, n,, 
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The only fixed input parameters are the amplitude of the wave E”,,, its frequency o, 
and its angle of incidence 8,. Since the coefficients R, RL, T, and TL, which denote 
the reflection and transmission coefftcients of the transversal and longitudinal part, 
respectively, are not given a priori, we represent Eqs. (19) and (20) by an equivalent 
set of differential equations. How to get this representation will be shown exemplarily 
for the overdense region. Defining 

C, = Tl?, cos QP and C, = TLe’(Lx: 

the y component of Eq. (20) and its derivatives read 

2; = c, t c,, (21) 

E;'=KC,+KLC2, (22) 

&n=K2c, fKfCz. (23) 

Eliminating C, and C, by means of Eqs. (21) and (22), and inserting in Eq. (23) 
yields 

E;"= (K+ KL)g;'-KKLE;. (24) 

The solution of Eq. (24) is uniquely specified, provided that the two constants C, 
and C, are known or, equivalently, I!?: and I?:‘, are prescribed at the left boundary. 
The latter values are, however, not known from the outset as they depend on the 
complete solution, valid in the entire space, and especially on the right-hand 
boundary conditions. For that reason, open boundary conditions have to be 
formulated. This is accomplished by establishing a second differential equation which 
involves I?:, I?:‘, and higher derivatives. This equation is obtained by differentiation 
of Eq. (24) and by elimination of Ez”, through Eq. (24); it becomes 

(25) 

Note that Eq. (25) has a richer class of solutions than Eq. (24) and contains the 
class of solutions of Eq. (24) as a subset. The combined solution of both differential 
equations, therefore, uniquely determines this subset without specification of Z?z and 
i?:’ at a certain point. 

A similar procedure is performed for the underdense asymptotic region. From the J' 

component of Eq. (19) a second set of differential equations is obtained, 

E”;” = i(k, + k,) I?:’ + k,k,I?z - 2l?,, cos B,k,(k,y t k,,) ecikyr;, (26) 

i?,U’ t ik,k,(k, + k,~) E,U 

- 2iEo cos 8, k, k,,(k, + k,,) e ikv.r, (27) 

which holds at the right-hand boundary. 
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As already mentioned in Section III. 1.a the boundary conditions serve to fill the 
missing rows of the coefficient matrices involved by the spatial discretization of Eqs. 
(8) and (IO). Ob viously, the first and last two rows of the matrix resulting from Eq. 
(10) are completed by the spatial discretization of Eqs. (24), (25) and Eqs. (26), (27), 
respectively. With this, the missing elements in the quintdiagonal matrix are uniquely 
specified in a nontrivial manner. 

The second-order character of the differential equation for EX, Eq. (8) requires the 
specification of two boundary conditions which are represented by the set of 
differential equations of first order, 

(28) 

‘if = k,\k, - kL) 
[(kc + ki)(2igo cos 8, k,e-ikx-x + E;‘) - ik,(k,~ k, + k;) 41. (29) 

The spatial discretization of Eqs. (28) and (29) tills the first and last row of the 
tridiagonal matrix to be solved for the present value of gX = G. 

c. Determination of the Reflection Coefficient and Electromagnetic Energy Theorem 

Because of the nonvanishing component of the electric field in the direction of the 
density gradient, resonantly driven electrostatic oscillations are excited at the critical 
density. To determine the reflection coefficient in a simple way, an appropriate 
damping of the longitudinal part is required without altering the electromagnetic 
component. This can be done by inserting a damping rate v,, in the electron 
momentum equation to derive the low frequency amplitude of the electron current. 
The properties of this damping rate have been described by Forslund et al. 1201. For 
Eqs. (6) and (7) it follows that j3, is considered as a complex quantity, 

Since vL only appears in connection with p2, the thermal correction, it is clear that 
the damping only affects the longitudinal part of the hf-wave spectrum. An adequate 
value for the damping rate of the electrostatic wave is vL/w x 1 (see Forslund et al. 
[20]). This value is strong enough to damp away the electrostatic waves during their 
propagation down the density gradient, in accordance with the physical requirements. 
Therefore, we omit the contribution of the reflection coefficient RL of the electrostatic 
wave in Eq. (19), 

ET X&Xc, (30) 

where x, denotes the spatial position of the critical layer. 
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Considering E = (E,, E,) on the left-hand side of Eq. (30) as being known from 
the numerical solution, Eq. (30) can be immediately solved for the complex reflection 
coefficient of the transversal wave, 

R= e 

-ik,x 

E, sin 8, 
(2, + IT, sin 8,e ikxx), 

Rx e 

-ik,x 

E, cos 8, 

(E, -IT, cos BoeCikx”). 

(31) 

(32) 

On the other hand, one can calculate from Eq. (30) the quantity, 

IE’(* = pxl* + IQ2, 

assuming that the reflection coefficient R consists of an absolute value (R / and a 
phase p (R = (R I ei”), 

IEl*=&(l +lR12)+2/RIE”; cos28, cos(2k,x+p). (33) 

The first term in Eq. (33) specifies the mean value of the oscillation of \El*, 

-&l + IRj’) = ;(l&,,, + lEi&)= I& (34) 

The factor in front of the phase cos(2k,x + p) defines the amplitude of the 
oscillation, 

Because of the known maxima and minima of lg/*, i.e., IEI’,,, and IEl’,,,, the 
reflection coefficient can be easily determined, 

(36) 

IRI= - IN 
2E; cos 28, (37) 

Thus, through Eqs. (31), (32), (36), (37), f our different formulas are given for 
calculating the reflection coefficient; the absorption coefficient finally results from 

A = 1 -lRI*. 

More detailed information about the deposition and dissipation of the incident 
radiation energy can be obtained from the electromagnetic energy theorem. 
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Multiplying Eq. (6) by i?:, and Eq. (7) by Ez, and subtracting the complex 
conjugate of the resulting expressions yields 

(38) 

where “c.c.” stands for “complex conjugate.” 
Next, we integrate both sides of Eq. (38) from a point xp, deep inside the plasma, 

where the wave is evanescent, i.e., ,??* = EY = 0, up to a point x,., located well outside 
the plasma; the result can be expressed as 

where 

(40) 

represents the instantaneous electric field energy stored in the interval [xp, x(,1. 
Furthermore, in Eq. (39), 

(7) = z’w jX’ 
0 XP 

dx$ {Im(~,)jE,I* + Im@,,E.z a:&) 
0 

is the average rate of energy absorption or heating which takes place between x, and 
x,, * 

For the sake of transparency, we have partially removed the normalization in Eqs. 
(39) to (41). Comparison with the Poynting’s theorem. 

a,w+4n Re(‘j . E*) d3x = -4n ^ V . S d3x, 
J (42) 

V 

where S = (c/471) Re@ X fi*), fi = (l/ik,) V X E, shows that each term in Eq. (39) 
has a corresponding term in Eq. (42). 

In connection with an analogous energy equation for the ions being discussed in 
Section 111.3, Eq. (39) serves as a test for the accuracy and quality of the total 
numerical scheme as well as for the correct choice of the boundary and initial con- 
ditions. 
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111.2. Solution of Poisson’s Equation 

From 121-241 it is well known that in the radiation-free case the consideration of 
the electrostatic field due to charge separation (ambipolar field) gives a more realistic 
impression of the physics in an expanding plasma. It turned out that the ambipolar 
field is responsible for the formation of an ion front which does not emerge when 
quasineutrality is assumed. However, from the mathematical and numerical point of 
view, Poisson’s equation involves some difficulties concerning the global solution 
method and the boundary conditions. 

As it can be seen from Eq. (2) of Section II, our Poisson’s equation is a nonlinear 
differential equation because of the Boltzmann term exp(# - w). Therefore, the elec- 
trostatic potential $ is not available by direct spatial discretization, though v/ and n 
are known. To get rid of this difficulty, we establish an iteration scheme, the 
realization of which is rendered possible by reformulating Poisson’s equation in terms 
of the electrostatic field E = -4’. Differentiating Poisson’s equation and replacing 
exp(# - I,V) by n -E’, we get 

E” + EE’ + E’I+v’ -En = n’ + ny/‘. (43) 

The advantage of Eq. (43) is evident. We have eliminated the exponential term so 
that the nonlinearity only appears in the bilinear term EE’. 

The numerical procedure for solving Eq. (43) is mainly that described by Mason 
[2 11, but with two differences. In our scheme the ponderomotive potential is included, 
and the spatial discretization will be carried out on a nonequidistant mesh. 

In implementing the iteration scheme at a fixed time step n, we suppose that the 
electrostatic field E is known for an iteration step i at each grid point j. In order to 
obtain the electrostatic field for the iteration step i + 1, we insert E of the ith iteration 
step at the grid points j + 1, and j - 1, yielding a simple algebraic equation for 
E,j’(i + l), 

EJ(i + 1) = 2$g(:) 1 RJ’(i), 
.I 

(44) 

with the auxiliary formulas, 

QW = {d[(xJ+, - xJ-,) n,: - (E,;+,(i) - E;-,(i))] }-I, (45) 

-XJ-I)(nj” +nSwj’“)- 
2 
- xi” 

2 - 
xj”-xj”p, 

, (46) 

(47) 

The spatial derivatives of the ponderomotive potential v and the ion density n, y’, 
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and n’, respectively, are calculated by direct numerical differentiation (Akima [ 25, 

261). 
As an initial guess for t = 0 we choose ET” (i = 0) ~0 for all j which becomes 

particularly effective for the convergency of the iteration scheme; for the time 
evolution, t > 0, Ej”(i = 0) = E,“-’ (i = I), is used where I denotes the number of 
iteration steps being at least necessary to satisfy a given error bound 6. The sum of 
the quadratic deviations, 

Jtl 

S,=xjEl [Ej”(i+ l)-Ej”(i)12<6, (48) 

serves as the criterion for the accuracy of the iteration. 
Equation (43) is uniquely solved with suitable boundary conditions, one at the left 

and one at the right side of the integration interval, respectively. Since a numerical 
solution is always restricted to a finite region of integration, some approximations 
must be made to represent the undisturbed plasma, x + -co, and the vacuum region, 
x + +co. This procedure finally results in two differential equations allowing again 
open boundary conditions (see Sect. 1II.l.b). 

Returning to Eq. (43) we first derive the left boundary condition at x = -L. In the 
asymptotic overdense region the electrostatic field as well as the electric field of the 
incident light wave will vanish for x + -co, and we get 

E(x+-m,t)=O=E’(x+-m,t), (49) 

l//(x + -00, t) = 0 = y/(x + -co, t). (50) 

Applying Eqs. (49) and (50) to Eq. (43), and assuming that the ponderomotive 
potential decays faster than the ambipolar tield yields 

E”-En-n’=O. (51) 

In Eq. (51) ion density variations at the left boundary are included corresponding 
to the finiteness of the integration interval. These variations must be in accordance 
with the boundary conditions for x--t -co, i.e., n(x-, --co, t) = 1, and 
n’(x+ -co, t) = 0. Following Crow et al. 1231, we replace in Eq. (51) E by 4 and 
expand the deviation E of the undisturbed ion density in potentials of 4. Writing 
n = 1 + e, we obtain 

-$“’ + f( 1 + E) - E’ = 0, (52) 

with 
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where the coefficients a, may vary with time. Since $ itself falls down to zero as 
x --) -co, we only consider in Eq. (52) linear contributions in 4 giving 

+“+(I-a,)qv=O. (54) 

Next we integrate Eq. (54) using the boundary conditions $ = $’ = 4” = 0 for 
x+--co, 

4” = (1 - a,)#. (55) 

Multiplying Eq. (55) by 4’ and integrating once more yields 

$4’ = (1 - a,)“2 4. (56) 

From Eq. (56) the gradient boundary condition on $ at the left boundary x = -i can 
be obtained, which has been derived by Crow et al. [23]. 

For our purpose a similar boundary condition on E is formulated by dividing Eq. 
(55) through Eq. (56), resulting in 

(57) 

The boundary condition valid in the vacuum region for x + +co is determined by 
first neglecting the ion density in Eq. (43) which decays faster than the electron 
density; we get 

E” + EE’ + E’ty’ = 0. (58) 

In the absence of v/, Eq. (58) has the solution E - l/(1 + bx) (Crow et al. [23 I), 
which vanishes for x-1 +oo. That means that E behaves like O(E), and E’ like O(E’) 
at the right boundary, where E is a small quantity. A similar behavior is expected 
when radiation is included. Assuming that all three terms in Eq. (58) are of equal 
importance it follows that w, which has an independent oscillatory behavior, is O(E). 
This is consistent with the assumption of small v in the derivation of the 
ponderomotive potential (Schamel and Sack 1271). We, therefore, can gain 
integrability of Eq. (58) by adding the small correction E”y, which is O(c4). 
Integrating the resulting expression we get 

E’(l + v)+$=o. 

Equation (59) is the boundary condition used at x = +L. The solution of Eq. (59) 

26 
E= l+bl’ (60) 
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where b = const. and c(x) = c” dx’/( 1 + I), extends the solution of Crow et al. 
[23] for the pure electron cloud. 

The electron density n, is finally computed from 

n, = n - E’, (61) 

where the spatial derivative of E is determined by numerical differentiation (Akima 
[25, 261). 

111.3. Zon Hydrodynamics 

The numerical solution of the one-dimensional compressible hydrodynamic ion 
equations, Eqs. (3) and (4) of Section II, is based on the Lagrangrian formulation of 
the problem in which the difference mesh is coupled to the plasma flow. This 
improves the spatial resolution of the expanding plasma and avoids uncontrollable 
numerical dissipation and dispersion. The latter effects appear when an Eulerian mesh 
such as the explicit Lax-scheme is used (see [ 17, 181). The Lagrangian difference 
mesh, however, always guarantees the adaptation of the spatial grid points to strong 
inhomogeneities in the density and velocity profile due to profile modifications or the 
generation of ion acoustic waves, etc. (see [ 17, 181). 

The coupling of the spatial coordinate x to the local flow velocity v is expressed by 

dx(t) - = v(x(t), t). 
dt 

Equation (62) is integrated to give 

X(t) = t + \’ v(x(s). t) dr, 
. 0 

(63) 

in which 

L’@(r), 7) = v t + i” u(x(r’), t’) d?, 5 = v’(<, r>. (64) 
-0 

Equation (63) describes a trajectory of a fluid element in the x-t plane. An 
equivalent representation is given by the Lagrangian variables r and r, where C: 
denotes the initial position of the fluid element, and r represents an appropriate 
parameter changing monotonically along the trajectory. The transformation from 
(x, t) to (c, 5) is accomplished by 

X = x(t, 5) = ( + I” v’(& r’) df, 
0 

(65) 

t = t(& t) = z, (66) 
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and the transformation of the partial derivatives is given by 

Inserting Eqs. (67) and (68) in Eqs. (3) and (4) yields 

where the initial conditions, 

(67) 

(68) 

(69) 

(70) 

have been used. 
Equations (62), (69), and (70) describe the ion motion in the Lagrangian for- 

mulation. 
Due to the lack of an evolution equation for the electrostatic field E, one is forced 

to carry out the space-time discretization in an explicit form. This asks for a stability 
condition which relates At to Ax. For the expansion of a compressible neutral gas the 
latter has been derived by Richtmyer and Morton [ 181. We can make use of this 
stability condition if we are able to find an equivalent gas dynamical description of 
our expanding plasma problem. 

For this reason we represent the electrostatic field E in the ion momentum equation 
by a pseudopressure p’ by means of 

and consider the motion of this so defined pseudofluid to be governed by p’. From 
that we derive the local “sound velocity” c(x, t) given by 

where we have assumed that p’ depends on x only through its n-dependence, 
6 =fi(n(x)). Combining Eq. (71) with Eq. (72) we arrive at 
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By knowing the electric field E and the ion density n from the numerical output we 
are now able to follow the local quasi-sound velocity in space and time, and to decide 
whether the stability condition for the pseudogas dynamical (respectively) plasma- 
expansion problem is satisfied or not. Hence, by transforming the electrostatic 
problem to a gas-dynamical problem and making use of the computer output we can 
understand the stability behavior of the expanding plasma. More details about this 
stability consideration are relegated to a forthcoming publication [28]. 

With c* given by Eq. (73), the ion momentum equation is replaced in Eulerian 
form by 

or by 

dv c2 an 
----> 

z- n, at 

in the Lagrangian formulation. According to Richtmyer and Morton [ 181 (see also 
129, 30]), the stability criterion for the set of Eqs. (62), (69) and (75) then reads 

cAt 

xJ+ I - x,; 
< 1. 

This criterion is certainly violated if a crossing over of Lagrangian mesh points 
occurs or if the sound velocity which is generally a function of space and time, blows 
up. Equation (76) together with Eq. (73) governs the stability behavior of the plasma 
expansion in the case where the radiation field is switched off. The full problem, 
including the high-frequency wave fields, requires a generalization of this concept 
which is in progress. Nevertheless, even in the simpler version, our stability 
discussion seems to be new. It allows the understanding of the numerical breakdown 
usually observed in hydrodynamic treatments of the plasma expansion problem, as 
will be shown in Section IV.l. 

We close this section by mentioning the corresponding “energy law.” It becomes in 
the Eulerian description, 

We note, however, that Eq. (77) cannot be formulated in conservative form. By 
replacing nv through 4,E + n,v, (Ampere’s law), where the mean electron velocity 
satisfies the electron continuity equation, 
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and using E = -a,$, II, = exp(4 - y/), Eq. (77) can be rewritten as 

The right-hand side of Eq. (78) cannot be represented by a combination of partial t 
or x derivatives. This has already been pointed out by Mora and Pellat [ 3 11, and by 
Trulsen [32]. The integrated version of Eq. (77) is used to check the numerical 
accuracy of the plasma expansion code. 

IV. NUMERICAL RESULTS 

IV. 1. Plasma Expansion. without Radiation Field 

To make sure that all the components of our numerical scheme described in 
Section III yield reasonable results, we present in this section several tests and 
compare their results with calculations published previously. In the radiation-free 
case various calculations for the plasma expansion problem have been carried out by 
application of analytical (i.e., self-similar solutions) and numerical methods being 
based on both hydrodynamic and kinetic descriptions. Self-similar solutions (see 
[ 33-361) have been derived by assuming quasi-neutrality, whereas solutions including 
charge separation have been obtained numerically (see [ 2 l-241). 

For initialization the ion density profile is chosen to be 

2 
n(x) = ;natan exp - 

1 I 
(x-x,) 1 

I I \’ 

where x0 denotes the spatial position of 

n(x = X”) = 0.5. 

The parameter 1 determines the width of the density decrease which means that the 
profile becomes flatter with increasing 1. In the limit l--t 0 the step profile, 

n= 1, x<x(). 

= 0, x > -qJ, 
(80) 

is approached. With n(x) given through Eq. (79) or (80), the spatial dependence of 
the electrostatic field is obtained by means of iterations as described in Section 111.2. 
Considering the behavior of the quadratic deviation S,, Eq. (48), as a function of 
iteration steps, we completely confirm the results of Mason [21] concerning the 
convergence of the iteration procedure. Moreover, we point out that the iteration 
scheme is widely insensitive to different choices of the initial values as it has to be 
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expected from a reasonable iteration scheme. This has been checked, for example, by 
applying the quasi-neutral solution, 

instead of E = 0. However, more iteration steps are needed to gain strong 
convergence when Eq. (81) is used. For that reason, we have used E = 0 in all 
calculations presented in this section. 

Inserting the step function, Eq. (80), we have tried to reproduce the analytical 
solution of Crow et al. [23] for the electrostatic field in the pure electron cloud which 
reads 

2b 
E= 

1 + b(x - x,,)’ 
b = (2e)-I”* = const. 

From Eq. (82) the electrostatic field at the density step x =x, turns out to be 0.858. 
The corresponding value calculated from our iteration scheme is 0.869. The relative 
deviation between the analytical and numerical value is about one per cent, which 
may be due to the basic difficulty in numerically discretizing the 1 + 0 jump. 
Nevertheless, our iteration scheme produces reliable results even when the density 
gradients are extremely steep. 

In the following we explain our results for the plasma expansion without radiation 
field. In order to represent at t = 0 a smooth but sharp ion density profile, we have 
chosen 1= 4 in Eq. (79). The numerical solution of Poisson’s equation and the 
hydrodynamic ion equations have been carried out on a space interval of length 
4OOA, centered around zero. For the spatial discretization of the electrostatic field, of 
the ion and electron density, and of the ion velocity, this interval has been divided 
into 500 subintervals which are equidistant at t = 0. A further increase of the mesh 
points has not affected the accuracy of the numerical code, which indicates that 
effects due to the spatial resolution or due to the introduction of artificial viscosities 
are negligibly small. 

The initial state of the electrostatic field has been determined within 200 iteration 
steps. For the time evolution this quantity has been reduced to 25, guaranteeing that 
the quadratic deviation S,, Eq. (48) has never exceeded lo-‘. After having 
calculated the electrostatic field for a new time step t” by inserting E(t”-‘) as an 
initial guess, the ions have been advanced by solving its momentum equation where 
AC has usually been set equal to 0.025 (for further information concerning the formal 
structure of the code, see the Appendix). 

Since the plasma expansion may give rise to shocks we have added in the ion 
momentum equation a pseudoviscosity term of the form, 

(83) 
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where (&I/&X- = min(&/& 0), ci = 2. This viscosity derived by Schulz [37] is 
similar to the pseudoviscosity of Richtmyer and Morton [ 181 and gives the correct 
thermodynamic behavior for shock problems [ 18, 371. 

According to the space-time discretization scheme (see, e.g., [ 17, IS]) the ion 
velocity is evaluated at the half-time step points tnS-I’*, whereas the electrostatic field 
and the ion density are defined at the full-time steps t”. For the initial situation this 
means that the ion velocity has to be determined for the time step t”*, using the 
initial condition u = 0. Figure 1 shows the time evolution of the maximum elec- 
trostatic field. The electrostatic field continuously decays and, at the same time the 
plasma is being accelerated. The dashed part which is identical with the increasing 
part of E indicates the onset of numerical instability. 

The spatial dependence of the electrostatic field at a late time (t 5 15~;‘) is 
shown in Fig. 2. One observes the tendency of plateau formation which is charac- 
teristic for the quasi-neutral region. This behavior reflects the space independence of 
the field which is predicted by the self-similar theory (see [33-36]), and which has 
been found also in particle simulations (Denavit [24]). The peak ahead of the quasi- 
neutral region is due to the influence of the charge separation, alluding to the 
formation of the ion front. 

Figure 3a shows the space-time evolution of the ion density for three different 
times. During the expansion the initially steep density profile becomes flatter, and at 
t = 15w;‘, the ion front mentioned in [22-241 is formed. A few time steps later this 
front exhibits a shocklike behavior which is accompanied by a progressive steepening 
of the ion velocity profile in the front region; ahead of the front there always exists a 
pure electron gas. At t = 160;’ a sharp density peak emerges which is also indicated 
in Fig. la of [22] and in Fig. 4 of [23]. We now emphasize that this sharp peak is 
due to a numerical instability in connection with Eq. (76) and is caused by an 
explosive increase of the sound velocity, Eq. (73). According to the defined direction 
of the plasma expansion leading to E > 0 the sound velocity from Eq. (73) is well 

1 

FIG. 1. Time evolution of the electrostatic field at the ion front for the radiation-free case. At late 
times a numerical instability develops, as will be discussed in the Sections II.3 and IV.l. 
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FIG. 2. Electrostatic field E as a function of space at the time uPit = 15. In the space interval 
-50 < x/i, < -20 the field approaches the quasi-neutral plateau regime. 

behaved only if the ion density is monotonically decreasing, i.e., 8,n < 0. This 
condition, however, is violated, as can be seen in Fig. 3b, where the evolution of the 
density profile is drawn on a larger scale for times 13 < wPit < 17. Behind the ion 
front a plateau is formed, and B,n becomes zero (whereas E remains finite), which 
happens independent of the chosen pseudoviscosity. In that instance the sound 
velocity, Eq. (73), is singular, and the stability condition given by Eq. (76) is clearly 
not satisfied. Consequently, this simple hydrodynamic model has reached its limits 
just before the density peak comes up. All further calculations including those of 122, 

FIG. 3. Ion density as a function of space and time; (a) represents the global space-time dependence 
for three different time steps; (b) shows the onset of the numerical instability on a larger scale, -20 < 
x/A, Q 10, for five equidistant time steps. 
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231, which go beyond the plateau formation, can, of course, not yield reasonable 
results. This especially holds for the density peak itself. 

Further investigations are needed to clarify the driving mechanism of this singular 
behavior and to cure it with physical means. The neglect of charge separation, where 
this effect does not occur (c’ = l), is surely not a satisfactory answer. In the 
forthcoming publication [28] we shall show that this new kind of instability cannot 
be cured by adopting different electron equations of state and is, in this respect, 
independent of the electron thermodynamics. Furthermore, we point out that the 
plateau formation is not reached in Denavit’s particle simulation [24] and that 
instead noisy oscillations arise in the region behind the ion front (see Figs. 3 and 6 of 
[ 241) which are probably attributed to discrete particle effects. 

IV.2. Resonance Absorption in the Steady State and Comparison 
with Previous Results 

Since the problem of resonance absorption and mode conversion has been studied 
for a long time, there is a great deal of information available for the sake of 
comparison. Early analytical studies on this subject are due to F&sterling [38], who 
interpreted for a cold plasma without any damping mechanism the essential 
singularity in the wave solution introduced by the resonance at the critical density. 
This singularity does not emerge if a small plasma temperature or collisions are taken 
into account. For the warm plasma case analytical and numerical calculations have 
been presented by Piliya [ 121, Kelly and Banes 1391, Forslund et al. (201, Speziale 
and Catto [40], and Pert 1411. All of these authors assume that the density depends 
linearily on the space variable, and that the gradient length L of the density profile is 
much larger than the wave length 2, of the incident light wave; this is usually 
expressed by k,, . L $ 1, where k, = 2rc/&. Defining the obliqueness parameter q by 
q = (k, * L)2’3 sin’ 8,, where k, . L is held fixed, several absorption curves have been 
presented for various values of 8,, the angle of incidence. The results reveal a 
maximum absorption of about 50 percent for q between 0.4 and 0.5. Additionally, it 
has been proven that the absorption is independent of the plasma temperature as long 
as p = (vu,.Jc) e 1. Furthermore, variations of the damping rate in a large parameter 
interval do not alter the efficiency of the resonance absorption. For a nonlinear 
density profile (Epstein profile) similar absorption curves have been presented by 
Ku11 (421. 

Figure 4 shows the absorption curve resulting from our code in comparison to 
curves from [39-41]. The calculations have been done with a nonlinear time- 
independent electron density profile of the form of Eq. (79), and with k, . L = 12.5, 
where L is the density gradient at the critical density; /I has been set equal to 0.2. Our 
numerical code reproduces the previous absorption curves. The slight deviations in 
the region 0.5 < q < 1.5 are due to the rather high plasma temperature, a result which 
is in agreement with Forslund et al. 120). Variation of the damping rate v,,/o for the 
electrostatic wave in the interval 0.05 < v,/o < 1.5 does not affect the absorption 
rate. 
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FIG. 4. Absorption rate in the steady state as a function of the obliqueness parameter q = (k,, . L)’ ’ 
sin’ B,,, where k, L = 12.5 in comparison to previous calculations of 139-41 1. 

In Fig. 5 we present the absorption rate for a steep density profile, setting 
k, . L = 1, for two different values of p. Concerning the temperature dependence of 
the absorption the situation has now changed. For higher values of /3 the maximum 
absorption rate which occurs at q z 0.4 is enhanced. We thus get the result that for a 
steep density gradient the absorption rate is more sensitive to temperature variations, 
a fact which is of interest in laser-fusion experiments, where profile steepening is 
expected to occur (Max [ 1 I). 

IV.3. Plasma Expansion with Radiation Field 

For the plasma expansion with radiation field the numerical code for the pure 
expansion described in Section IV.1 is completed by including the solution of the 
Schrodinger-type wave equation (see also the Appendix). The versatility of our code 
becomes evident by noting that, with a few simple program manipulations, the time- 
dependence of the radiation field and the influence of the charge separation can be 
switched on and off. In order to study the possible effects resulting from the time- 
dependent wave equation and Poisson’s equation, we distinguish in our numerical 

Ah ) 
1.0 

09 

0.8 

0.7 

a6 

05 
/-- 

04 / 

03 / 
'\ /pIo.05 

Ia 

q A 0.2 
0.2 \ 
01 \ 

0 
0 02 04 06 0.8 1.0 

q 

FIG. 5. The q-dependence of the absorption rate for two different temperatures /I= t’,,,?/c, and a 
steep electron density profile, k, L = 1. 
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TABLE II 

Case a,E 4” 

1 #O #O 

2 =o #O 

3 #O =o 

4 =o =o 

calculations four different cases shown in Table II. All calculations from Table II 
have been done with the set of normalized parameters, 

plasma temperature 

critical density n,/n, = l/8, 

angle of incidence o. = 300, 

vacuum wave-number k, = 7.07 . lo-*. 

amplitude of the incident light wave E, = 0.5, 

and k, . L = 5, where L is the initial density gradient length at critical. 
With the ion density profile defined by Eq. (79) the initial state of the high 

frequency field, of the electrostatic field, and of the electron density is determined by 
means of a two-level iteration procedure. In a first step we iteratively compute the 
electrostatic field by setting v/ = 0 and solving Poisson’s equation. The resulting 
electron density is then used for the stationary wave equation. At this stage, however, 
the electron density profile, especially the density gradient at critical, and the 
ponderomotive potential are not adjusted. Therefore, a second iteration procedure 
between Poisson’s equation and the wave equation is required. As mentioned in 
Section I the absorption rate depends on the density scale length in the critical density 
region. Thus, the absorption rate as a function of the iteration steps between 
Poisson’s equation and the wave equation should be a criterion for the correct adap- 
tation of the density profile and the wave Geld; exactly this is shown in Fig. 6. It can 
be seen that at least four iteration steps are needed to adjust the electron density to 
the radiation field and vice versa. In the quasi-neutral case, Cases 3 and 4 of Table II, 
the electrostatic field is directly given by 

E=- i +a,n+a,v . 1 
which follows by setting 4” equal to zero in Eq. (2). Equation (84) replaces the 
numerical solution of Poisson’s equation. 
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FIG. 6. Absorption rate as a function of iteration steps between Poisson’s equation and the wave 
equation for two different initial density profiles; curve 1: k, L = 5, curve 2: k, L = 2.5. 

We now present the numerical results for Case 1, where both the time-dependent 
modulation of the high frequency wave and the charge separation are taken into 
account. Figure 7 shows the initial state of the radiation field, Fig. 7a, of the elec- 
trostatic field, Fig.7b, and of the electron density profile, Fig. 7c. In Fig. 7a the 
difference between the electrostatic (longitudinal) and the electromagnetic 
(transversal) part of the wave is clearly manifest. Characteristic for the electrostatic 
component resulting from mode conversion is the enhancement of the field amplitude 
near the critical density, n, = (l/8) n,. On the other hand, the periodic behavior of 
the ponderomotive potential in the underdense region (n, < n,) reveals the transversal 
component. Its wave length calculated analytically from 1= z/k, cos 8, coincides 
within grid point accuracy with the wave length shown in Fig. 7a. 

The electrostatic field in Fig. 7b exhibits two superimposed structures which can 
qualitatively be interpreted in terms of Eq. (84), although quasi-neutrality is, strictly 
speaking, not valid. The Gaussian-type broad structure expresses the monotonic 
density decrease (see Fig. 7c) and is represented by the first term of Eq. (84). The 
superimposed line-scale structure reflects the influence of the ponderomotive potential 
and is mainly due to the second term of Eq. (84). 

In Fig. 7c the slight density dip at critical, n,/n, = 0.125, indicates the profile 
modifications and is due to the ponderomotive potential which maximizes near the 
critical density. 

An impression of the spatial and temporal variations of the electron density is 
given in Fig. 8 at equidistant time steps, wpit = 5. During the time evolution the 
initially gentle density profile exhibits a progressive nonmonotonic structure. 
Although the pattern resembles the D-front structure of Max and McKee [5] 
(disregarding the broadening of the transition near n,), we find that the theoretical 
constraints are not precisely met. This is seen from Fig. 9b where the ion flow 
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FIG. 7. Initial space dependence of the (a) ponderomotive potential, (b) electrostatic field, (c) 
electron density. 
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FIG. 8. Space-time evolution of the electron density for 0 < upit < 50; the rising numerical 

instability is denoted by an arrow. 

“e 
lo{ a 

09. 

08. 

07. \ 
\ 

-60 -40 -20 0 20 40 60 83 loo 
x 

Q8 

07 
-1.5 

\A* 
,/'.'\"O 

\ 

'\./' 

/ 

-a5 

i to 

-83 -40 -20 0 20 40 60 83 lco 
I 

, 

FIG. 9. Comparison of the electron density profile for two time steps. (a) wDit = 0, and upit = 40: 
(b) spatial structure of the ion density n, of the ion velocity v, and of the ponderomotive potential w at 
coDi I = 40. 
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velocity is plotted as a function of x at wPi t = 40. At that instant, the critical front 
moves with approximately sound velocity (0, = 1.16), and the input flow velocity is 
given by uinput % 0.65 which is defined by the point of relative minimum of v in the 
overdense region), whereas the output flow velocity becomes n,,tput % 1.6 (the point 
of relative maximum of u in the underdense region close to n,). Transforming to the 
frame where the critical surface is at rest, the input flow velocity becomes -0.5 1, and 
the output flow velocity 0.44, which means that both regions are subsonic. In 
addition, we observe the formation of a small density bump in the overdense region 
although the flow is subsonic there. Both contradict the steady-state model of Max 
and McKee [5] which requires a supersonic flow in the output region for the D-front 
structure, and for the “shock plus D-front” structure in the overdense region, respec- 
tively. 

We attribute these discrepancies to the nonstationarity of the flow as found 
similarly by Willi, Evans, and Raven [lo], and get good agreement with the 
experiments of Raven and Willi [3]. 

In order to elucidate the steepening of the density profile, we have drawn in Fig. 9a 
the electron density on a larger scale for two different time steps, t = 0 (initial state, 
see Fig. 7c), and I = 40. Within 15 ion time scales the profile steepens from initially 
k, . L z 2 to k, . L z 0.7 (see also Fig. 8). For later times the modifications of the 
profile at the critical density are only small. At t = 40 a slight density depression in 
front of the critical density region followed by an underdense bump can be seen. 
Ahead of this bump there exists a plateau which enlarges as the expansion goes on. 

Figure 9b shows the ion density n, the ion velocity v, and the ponderomotive 
potential I,V at t = 40 in the same space interval as Fig. 9a. Comparing the electron 
density from Fig. 9a with the ion density in Fig. 9b, only little differences can be 
seen. At the end of the plateau, however, the electron density extends more into the 
vacuum region than the ion density; in this region the ion velocity is maximum. 
Similar to the expansion without radiation field we are able to define an ion front, the 
position of which is correlated with the maximum ion velocity. Ahead of this front a 
pure electron cloud exists. The density depression in front of the critical density 
region is caused by the radiation pressure. The minimum density is indeed located 
near the enhanced ponderomotive potential, but it is not strictly correlated with the 
maximum value (see Fig. 9b). The small spatial shift of about 4Debye lengths is due 
to the deviation from quasi-neutrality in this region. A quasi-neutral description, 
Cases 3 and 4 in Table II, does not yield such a shift, and the structure resembles an 
envelope soliton (see [43]). We thus emphasize that the quasi-neutrality is not only 
violated at the ion front but also in the neighborhood of the enhanced ponderomotive 
potential. Finally, it can be found in Fig. 9b that the flow velocity in the critical 
density region as well as in the underdense region ahead becomes supersonic. 

In Fig. 10 we present the time evolution of the wave energy absorbed in the 
plasma. The absorption rate is a well-defined smooth function of t. From Fig. 10 one 
determines the initial value A(0) of the absorption rate to be equal to 0.59, which 
corresponds to q-value of 0.4, where q = (k, . L)*‘j sin* 8,, and k,, . L z 2. 
Qualitative comparison with the absorption curve for k, . L = 1, Fig. 5, shows that 
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FIG. 10. Absorption rate as a function of time, 0 & wpit < 55. for case I (see Table II). 

q = 0.4 is near the maximum absorption rate. The 10 percent decrease of the 
absorption rate later on is in accordance with the profile steepening from k, . L z 2 
to k, . L 2 0.7. Thus, the scale length at the critical density determines the absorption 
rate also in cases where the time evolution is taken into account. 

For t > 50 the numerical code becomes more and more unstable. However, the 
breakdown does not occur at the ion front (see Sect. IV.1). Instead the code collapses 
in the underdense region where the ponderomotive potential is strongly enhanced. We 
attribute this instability to the space charge effect in this region as mentioned in 
connection with Fig. 9b. The onset of the instability is also indicated by an arrow in 
Fig. 8. 

We note parenthetically that parametric processes can be excluded as driving 
mechanism for this numerical breakdown. First, periodic ion fluctuations should be 
observable in the underdense region with wave numbers ki corresponding to the 
matching conditions (i.e., / ki) rz 2 / k, 1 f or stimulated Brillouin scattering), which we 
do not see in our output. And second, if they would be present they should also occur 
in the quasi-neutral case [ 3 ] and should also cause breakdown there, which is, 
however, not observed. Obviously, parametric processes are suppressed. We attribute 
the lack of parametric wave activity to the presence of the pseudo-ion viscosity which 
raises the thresholds of parametric instabilities. 

The breakdown instead occurs at a place where charge separation is established. It 
is manifest in a single density peak and it disappears when charge separation is 
neglected. In all runs the total energy relation being composed of Eqs. (39) and (77) 
was fulfilled within 5 percent or less. 

We now compare the calculations of Case 1 (see Table II) with those of Cases 2 to 
4 and point out the characteristic differences. Dropping the time dependence of the 
wave field, Cases 2 and 4 of Table II, we obtain the absorption curve shown in Fig. 
11. In contradiction to Case 1 (see Fig. lo), the absorption curve is rather exotic. It 
is due to the incomplete adaptation between the radiation field and the density profile 
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FIG. 11. Absorption rate as a function of time, 0 < wpit < 55, when the time derivative in the wave 
equation is dropped. Note the rough structure in comparison to Fig. 10. 

which requires iterations between the wave equation and Poisson’s equation. Other 
than in the initial state, these time-consuming iterations have been omitted during the 
time evolution in all cases. Inclusion of a,E in the wave equation, as shown in Fig. 
10, removes this erratic behavior of A(t) and guarantees the instantaneous adjustment 
of the system, so that the above mentioned iteration is no longer needed. This is the 
main advantage of using the time-dependent Schrodinger equation. 

Assuming quasi-neutrality, 4” = 0, the electrostatic field E is calculated from 
Eq. (84), the results of which are shown in Fig. 12a and Fig. 12c for t = 0 and t = 40, 
respectively. For the sake of comparison we present through Fig. 12b and Fig. 12d 
the electrostatic field of Case 1 at the corresponding time steps. In Case 1 the elec- 
trostatic field decreases monotonically for x + co, as it is physically reasonable when 
the density vanishes. In the quasi-neutral case, however, the oscillations of the elec- 
trostatic field are closely tied to the oscillatory behavior of the ponderomotive 
potential which can be seen from Eq. (84). For x+ co, the first term (I/n) 3,~ 
vanishes, and the spatial structure of the electrostatic field is determined by 3,~. 

This nonvanishing of the electrostatic field for x+ co has a great influence on the 
temporal behavior of the ion velocity which is drawn in Fig. 13. In the quasi-neutral 
case the ion velocity (curve 2 of Fig. 13) increases more rapidly than in Case 1 where 
the charge separation is taken into account (curve 1). A similar observation has been 
made by Denavit [24] for the radiation-free plasma expansion. The spatial depen- 
dence of the velocity in the underdense region is correlated with the oscillations of the 
electrostatic field. A similar behavior is given in Fig. 5 of [9]. 

Furthermore, we note that the explicit time-dependence in the wave equation and 
the consideration of the charge separation are independent of each other. This has 
been checked by comparing the absorption curve A(t) and the electrostatic field from 
Case 4 with those from Cases 1 to 3. 
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FIG. 12. Comparison of the spatial dependence of the electrostatic field resulting from (a, c) quasi- 
neutrality, and (b, d) Case 1, for two different time steps, mDit = 0, and mDit = 40, respectively. 
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FIG. 13. Maximum ion velocity as a function of time for Case 1 from Table II, curve 1, and for the 
quasi-neutral case, curve 2. For later times the quasi-neutral velocity is unnaturally increased due to the 
nondecaying electrostatic field for x + 03 (see Figs. 12a, c). 
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Finally, our calculations have shown that the numerical instability described in 
connection with Case 1 does not appear when quasi-neutrality is assumed. The 
calculations come to a natural end when a significant part of the plasma has reached 
the right boundary at x = -ti, so that the asymptotic boundary conditions cannot be 
satisfied anymore. 

V. SUMMARY AND CONCLUSIONS 

Our numerical code SUNION described and developed in this paper has been 
checked by performing mainly two independent tests: 

(a) Plasma expansion without radiation field (- Poisson’s equation and ion 
hydrodynamics), 

(b) Resonance absorption in the steady state (- wave equation). 

In the radiation-free case our numerical calculations confirm the self-similar region 
of the plasma expansion enlarging in time behind the ion front. The most appealing 
new result is that charge separation which leads to a well-defined ion front, causes the 
onset of a numerical instability, no matter what artificial viscosities are used. It is 
related to the plateau formation behind the front, and is understood as a singularity in 
the sound velocity of the corresponding hydrodynamic problem. This instability 
seems to be inherently present in such systems as long as space charge effects are 
taken into account. 

Calculating the steady-state absorption curves depending on the obliqueness 
parameter q = (k, . L)2’3 sin2 8,,, where k,L = 12.5, we verified the absorption curves 
found in literature. Furthermore, for a sharp density gradient, k, . L = 1, a 
temperature dependence of the absorption rate was found. 

Using the full numerical code SUNION we studied the combined influence of the 
charge separation and of the explicit temporal modulation of the radiation field. It 
turned out that the time derivative in the wave equation, a,i? # 0, has practical 
implications for a reliable determination of the absorption rate. In cases where 
a,E = 0, the absorption rate is exposed to erratic variations which are due to the 
incomplete adaptation between the radiation field and the density profile. 

In addition, new regions are observed in which quasi-neutrality is violated, 
especially near the critical point, where the ponderomotive potential is strongly 
enhanced. In this region the instability first develops. Of course, these problems can 
be avoided by assuming quasi-neutrality, which is advantageous for calculating 
absorption rates, since the latter is not affected by local charge separation effects. 

A drawback of the quasi-neutral assumption, however, is that the physical 
boundary condition of the electrostatic field, namely, E + 0 as x-co, cannot be 
formulated correctly within the simplified electron model. The nonzero values of E 
falsify the ion expansion velocity, the correct determination of which is of primary 
interest for the ablation process of laser-irradiated targets. 
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Considering SUNION as a basic algorithm for solving the temporal evolution of 
the global laser-plasma interaction problem, several extensions and improvements 
can be thought of which would feed more light into the physics of laser-irradiated 
plasmas (Nuckolls [44]). The inclusion of several ion species, a more refined model 
for the slow electron response, or an improved transport code for both species, are 
steps in this direction. 

APPENDIX: FLOW DIAGRAMS 

Initialization (t = 0) 

(1) Input parameters L^, J, Ax, At, p, n,/n,, 8,, k,, EO, k, . L, and n (x, t = 0). 

(2) Initial state of E (t = 0), n, (t = 0), and v (t = 0), obtained by two level 
iteration of Eqs. (1) and (2) with a, = 0 in Eq. (1). 

(3) Ion velocity v(At/2). 

Time Evolution 

(1) New ponderomotive potential y/(t + At) (solution of wave equation, Eq. 

(1)). 
(2) New Lagrangian fluid coordinates x(t + At), Eq. (62). 

(3) New ion density n(t + At), Eq. (69). 

(4) New electrostatic field E(t + At), Eq. (44), and new electron density 
n,(t + At), Eq. (61). 

(5) New ion velocity v(t + +At), Eq. (70). 

(6) t-t+At. 
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